Tensorflow(@CVision)
12.2K subscribers
1.08K photos
181 videos
67 files
2.06K links
اخبار حوزه یادگیری عمیق و هوش مصنوعی
مقالات و یافته های جدید یادگیری عمیق
بینایی ماشین و پردازش تصویر

TensorFlow, Keras, Deep Learning, Computer Vision

سایت دوره
http://class.vision

👨‍💻👩‍💻پشتیبان دوره ها:
@classvision_support
Download Telegram
YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection

YOLO Nano possesses a model size of ~4.0MB (>15.1x and >8.3x smaller than Tiny YOLOv2 and Tiny YOLOv3, respectively) and requires 4.57B operations for inference (>34% and ~17% lower than Tiny YOLOv2 and Tiny YOLOv3, respectively) while still achieving an mAP of ~69.1% on the VOC 2007 dataset (~12% and ~10.7% higher than Tiny YOLOv2 and Tiny YOLOv3, respectively).

Paper: https://arxiv.org/pdf/1910.01271

#paper #object_detection #YOLO_Nano
در انتقال یادگیری از لایه‌های میانی غافل نشوید

در سناریو انتقال یادگیری و هنگامی که بخواهیم شبکه پیش آموزش دیده روی تسک مبدا را برای تسک مقصد استفاده کنیم، دو راه پیش‌روی خود داریم. راه اول این است که شبکه را به اصطلاح فریز کنیم و یک لایه خطی روی فیچر‌های لایه آخر شبکه برای تسک مقصد استفاده کنیم. راه دوم هم این است که کل شبکه را مورد فاین تیون قرار بدهیم. حالا مقاله‌ای اومده که نشون داده راه سومی هم جز این دو هست و این راه فریزکردن شبکه و در عین حال سوارکردن یک لایه خطی بر روی فیچرهای تمام لایه‌های میانی شبکه است (نه فقط فیچرهای لایه آخر). در واقع سوالی که منجر به این ایده شده این بوده که Fine-tuning با این که پیچیدگی و تعداد پارامتر بیشتری نسبت به حالت فریزکردن مدل داره چرا بهتر عمل میکنه؟ نکنه در سناریو Fine-tuning صرفا فیچرهای میانی شبکه دارند به آخر شبکه پاس داده می‌شوند؟؟)

این مقاله ابتدا اومده imagenet رو به عنوان تسک مبدا در نظر گرفته و ۱۹ دیتاست دیگه مثل Cifar100 و Clevr و Pets و ... رو به عنوان تسک مقصد در نظر گرفته. سپس یک مقداری تحت عنوان domain affinity محاسبه کرده که نشون میده هر کدوم از این ۱۹ تسک مقصد چه قدر به imagenet نزدیک هستند. حالا اومدند و برای هر کدوم از این دیتاست‌ها سه سناریو دسته‌بند خطی روی شبکه مبدا فریزشده (Linear)، فاین تیون‌کردن شبکه مبدا (Fine-tuning) و اموزش دادن از اول (Scratch) و نتایج این روشها رو تو عکس figure2 ای که مشاهده میکنید گذاشتند. در این نمودار دیتاست های سمت چپ دارای affinity کمتر و دیتاست‌های سمت راست دارای affinity بیشتری هستند. نمودار نشون میده که برای دیتاست‌های چپ سناریو Scratch جواب‌بهتری از بقیه میده و برای دیتاست‌های راست هم سناریو Linear جواب خوبی میده ( که منطقی هم هست).

در گام بعدی مقاله اومده و مدل خودش یعنی Head2Toe رو مطرح کرده. در این مدل ابتدا شبکه مبدا (همون پیش آموزش دیدهه روی imagent) فریز میشه و سپس تمامی فیچر‌های میانی شبکه انتخاب می‌شوند. از اونجایی که سایز اینها خب زیاده فیچرهای هر لایه توسط یک مکانیزم pooling ابعادشون کاهش پیدا میکنه. در نهایت تمامی این فیچرهای کاهش بعد داده شده تمامی لایه‌ها با هم کانکت می‌شوند و یک بردار ویژگی بزرگ به دست میاد (اسمش رو h_all بذارید). از اونجایی که این h_all هم بزرگه و آموزش دادن کلاسیفایر خطی روش ممکنه منجر به اورفیت بشه، مقاله اومده از رگولاریزیشن Group lasso برای آموزش یک دسته‌بند خطی روی این بردار بزرگ استفاده کرده تا وزن‌هایی که به دست میان اسپارس باشن و هم به نوعی عمل فیچر سلکشن رو روی h_all انجام داده. در نهایت هم اومدن head2Toe رو روی اون ۱۹ دیتاست مختلف اجرا کردند و نشون دادند که در میانگین روششون بهتر از سناریو‌های دیگه نظیر Linear و حتی Fine-tune داره عمل میکنه!

لینک مقاله:
https://arxiv.org/abs/2201.03529

#read
#paper

🙏Thanks to: @nlp_stuff 🌹